Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[N, N^{\prime}-Bis(4-chlorobenzylidene)-2,2-dimethylpropane-1,3-diamine- $\left.\kappa^{2} N, N^{\prime}\right]$ iodidocopper(I)

Reza Kia, ${ }^{\text {a }}$ Hoong-Kun Fun ${ }^{\text {a }}$ and Hadi Kargar ${ }^{\text {b }}$
${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 3 January 2009; accepted 9 January 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.024 ; w R$ factor $=0.067$; data-to-parameter ratio $=39.9$.

The molecule of the title compound, $\left[\mathrm{CuI}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)\right]$, lies across a crystallographic mirror plane. The coordination around the copper centre is distorted trigonal planar, with a bite angle of $94.40(7)^{\circ}$. A six-membered chelate ring is formed by the coordination of iminic N atoms of the bidentate ligand to the Cu^{I} atom, adopting a chair conformation. This conformation is required if the local symmetry of the metal coordination site is in accordance with a mirror plane that passes through the metal atom normal to the line connecting the N atoms. The dihedral angle between the benzene rings is $78.66(5)^{\circ}$. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which link the molecules into chains along the b axis.

Related literature

For puckering parameters, see: Cremer \& Pople (1975). For related literature and the catalytic applications, see, for example: Killian et al. (1996); Jung et al. (1996); Small et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\left[\mathrm{CuI}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)\right]$
$M_{r}=537.71$
Monoclinic, $C 2 / m$
$a=16.2770$ (1) \AA
$b=12.2983$ (1) Å
$c=10.6255$ (1) \AA
$\beta=92.249(1)^{\circ}$
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.334, T_{\text {max }}=0.463$
$V=2125.37$ (3) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.74 \mathrm{~mm}^{-1}$
$T=296$ (2) K
$0.44 \times 0.31 \times 0.28 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.067$
$S=1.02$
4869 reflections

39802 measured reflections 4869 independent reflections 4157 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

$$
\begin{aligned}
& 122 \text { parameters } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& \Delta \rho_{\max }=0.74 \mathrm{e}_{\AA}^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots C g 1^{\mathrm{i}}$	0.97	2.92	$3.7220(19)$	141

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1 . C g 1$ is the centroid of the C1\–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant (No. 305/ PFIZIK/613312). RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2609).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Jung, B., Karlin, K. D. \& Zuberbühler, A. D. (1996). J. Am. Chem. Soc., 118, 3763-3768.
Killian, C. M., Tempel, D. J., Johnson, L. K. \& Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664-11670.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Small, B. L., Brookhart, M. \& Bennett, A. M. A. (1998). J. Am. Chem. Soc., 120, 4049-4054.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

[N, N^{\prime}-Bis(4-chlorobenzylidene)-2,2-dimethylpropane-1,3-diamine- $\kappa^{2} N, N^{\prime}$]iodidocopper(I)

R. Kia, H.-K. Fun and H. Kargar

Comment

In recent years, an increasing amount of research has been focused on the design and preparation of mono- or di-nuclear mixed ligand transition metal complexes containing neutral, chelating nitrogen ligands. Early and late transition metal complexes of this type have extensively been used as catalysts for a wide categories of reactions, including olefin polymerization (Killian et al., 1996) and oxygen activation (Jung et al., 1996). In this context, diverse chelating Schiff base type ligands, amines and pyridine derivatives (Small et al., 1998) have successfully been applied in the preparation of these homogeneous catalysts. Here we report the crystal structure of an aldimine Schiff base ligand with copper(I) iodide. To the best of our knowledge, the title compound is the first tricoordinate complex of an aldimine bis-Schiff base ligand with copper(I) iodide adopting triginal planar geometry.

The title compound, I, Fig. 1, lies across a crystallographic mirror plane. Atoms I1, Cu1, C9, C10 and C11 lies on this mirror plane. The asymmetric unit of (I) is composed of one-half of the molecule. The coordination geometry around copper has a distorted trigonal planar geometry. The deviation of the Cu atom from the $\mathrm{N} 1 / \mathrm{N} 1 \mathrm{~A} / \mathrm{I} 1$ plane is -0.1213 (8) \AA. A six-membered chelate ring is formed in this case by the coordination of iminic nitrogen atoms of the bidentate ligand which adopts the chair conformation with the ring puckering paremeters (Cremer \& Pople 1975) of $Q=0.7001$ (14) $\AA, \Theta=7.72$ $(11)^{\circ}, \Phi=0.0(9)^{\circ}$. This conformation is required if the local symmetry of the metal coordination site is in accordance with a mirror plane that passed through the metal atom normal to the line connecting the nitrogen atoms. The dihedral angle between the phenyl rings is $78.66(5)^{\circ}$. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Cg 1 is the centroid of the C1-C6 benzene ring) which link the molecules into chains along the b-axis (Fig. 2 and Table 1).

Experimental

N, N^{\prime}-Bis(4-chlorobenzylidene)-2,2-dimethylpropane ($694 \mathrm{mg}, 2 \mathrm{mmol}$) was added dropwise to a suspension of CuI (380 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in 50 ml of THF. After 15 minutes a clear yellowish solution was obtained. The volume of the reaction mixture was reduced until the formation of a yellow precipitate occurred. Single crystals suitable for X-ray diffraction were grown from the acetonitrile solution.

Refinement

All H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.96 \AA$ (methyl), and $0.97 \AA$ (methylene) and refined in the riding model approximation with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The highest peak $\left(0.74 \mathrm{e} . \AA^{-3}\right)$ is located 0.60 \AA from I1 and the deepest hole $\left(-0.55\right.$ e. \AA^{-3} is located $0.59 \AA$ from I1.

supplementary materials

Figures

Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atomic numbering. Symmetry code for A atoms; $X,-Y, Z$.

[N, N^{1}-Bis(4-chlorobenzylidene)-2,2-dimethylpropane-1,3-diamine- $\kappa^{2} N, N^{\prime}$]iodidocopper(I)

Crystal data

$\left[\mathrm{CuI}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)\right]$
$M_{r}=537.71$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=16.2770$ (1) \AA
$b=12.2983$ (1) \AA
$c=10.6255$ (1) \AA
$\beta=92.249(1)^{\circ}$
$V=2125.37$ (3) \AA^{3}
$Z=4$
$F_{000}=1056$
$D_{\mathrm{x}}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 9801 reflections
$\theta=2.5-35.7^{\circ}$
$\mu=2.74 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, yellow
$0.44 \times 0.31 \times 0.28 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.334, T_{\text {max }}=0.463$
39802 measured reflections

4869 independent reflections
4157 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=35.0^{\circ}$
$\theta_{\text {min }}=1.9^{\circ}$
$h=-26 \rightarrow 26$
$k=-19 \rightarrow 19$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.067$
$S=1.02$
4869 reflections

122 parameters

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.031 P)^{2}+1.3061 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.74 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00458 (18)

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Experimental. The low-temperature data were collected with the Oxford Cyrosystem Cobra low-temperature attachment
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
I1	$0.116357(8)$	0.0000	$0.351624(13)$	$0.04474(5)$
Cu1	$0.250035(16)$	0.0000	$0.46811(2)$	$0.04325(7)$
Cl1	$0.38586(4)$	$0.32893(7)$	$-0.03450(5)$	$0.0900(2)$
N1	$0.31811(7)$	$0.11994(10)$	$0.54747(11)$	$0.0410(2)$
C1	$0.32263(11)$	$0.17020(14)$	$0.27282(15)$	$0.0515(4)$
H1A	0.2889	0.1119	0.2920	0.062^{*}
C2	$0.32963(11)$	$0.20089(16)$	$0.14902(16)$	$0.0567(4)$
H2A	0.3009	0.1637	0.0851	0.068^{*}
C3	$0.37946(11)$	$0.28682(17)$	$0.12088(16)$	$0.0545(4)$
C4	$0.42404(12)$	$0.34113(16)$	$0.21435(18)$	$0.0603(4)$
H4A	0.4593	0.3974	0.1940	0.072^{*}
C5	$0.41577(11)$	$0.31124(14)$	$0.33842(16)$	$0.0519(3)$
H5A	0.4444	0.3493	0.4017	0.062^{*}
C6	$0.36540(9)$	$0.22526(11)$	$0.37029(13)$	$0.0411(3)$
C7	$0.35971(9)$	$0.19805(12)$	$0.50364(14)$	$0.0440(3)$

H7A	0.3889	0.2415	0.5614	0.053^{*}
C8	$0.32286(11)$	$0.10423(13)$	$0.68508(14)$	$0.0486(3)$
H8A	0.2675	0.1019	0.7156	0.058^{*}
H8B	0.3505	0.1664	0.7237	0.058^{*}
C9	$0.36849(14)$	0.0000	$0.72732(19)$	$0.0456(4)$
C10	$0.45648(16)$	0.0000	$0.6822(3)$	$0.0618(6)$
H10A	0.4554	0.0000	0.5918	0.093^{*}
H10B	0.4847	-0.0637	0.7132	0.093^{*}
C11	$0.3698(2)$	0.0000	$0.8725(2)$	$0.0717(8)$
H11A	0.3144	0.0000	0.9003	0.108^{*}
H11B	0.3978	0.0637	0.9038	0.108^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.03731(7)$	$0.05062(8)$	$0.04559(8)$	0.000	$-0.00706(5)$	0.000
Cu1	$0.03802(12)$	$0.05125(14)$	$0.04003(12)$	0.000	$-0.00415(9)$	0.000
C11	$0.0925(4)$	$0.1280(6)$	$0.0491(2)$	$-0.0450(4)$	$-0.0017(2)$	$0.0181(3)$
N1	$0.0443(6)$	$0.0406(5)$	$0.0381(5)$	$0.0015(4)$	$-0.0004(4)$	$-0.0020(4)$
C1	$0.0583(9)$	$0.0507(8)$	$0.0454(7)$	$-0.0190(7)$	$0.0027(6)$	$-0.0049(6)$
C2	$0.0583(9)$	$0.0682(10)$	$0.0433(7)$	$-0.0221(8)$	$0.0003(6)$	$-0.0066(7)$
C3	$0.0507(8)$	$0.0683(10)$	$0.0444(7)$	$-0.0135(7)$	$0.0022(6)$	$0.0042(7)$
C4	$0.0625(10)$	$0.0636(10)$	$0.0548(9)$	$-0.0268(8)$	$0.0007(7)$	$0.0043(8)$
C5	$0.0539(8)$	$0.0520(8)$	$0.0492(8)$	$-0.0170(7)$	$-0.0044(6)$	$-0.0023(6)$
C6	$0.0416(6)$	$0.0381(6)$	$0.0435(6)$	$-0.0026(5)$	$-0.0005(5)$	$-0.0035(5)$
C7	$0.0496(7)$	$0.0396(6)$	$0.0425(6)$	$-0.0034(5)$	$-0.0019(5)$	$-0.0060(5)$
C8	$0.0578(8)$	$0.0509(8)$	$0.0372(6)$	$0.0027(6)$	$0.0037(6)$	$-0.0045(6)$
C9	$0.0502(11)$	$0.0543(11)$	$0.0320(8)$	0.000	$0.0000(7)$	0.000
C10	$0.0463(12)$	$0.0775(17)$	$0.0611(14)$	0.000	$-0.0050(10)$	0.000
C11	$0.102(2)$	$0.0794(19)$	$0.0336(10)$	0.000	$-0.0029(12)$	0.000

Geometric parameters ($\AA,^{\circ}$)

$\mathrm{I} 1-\mathrm{Cu} 1$	$2.4607(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0104(12)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.0104(12)$
$\mathrm{C} 1-\mathrm{C} 3$	$1.7373(17)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.2739(19)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.4739(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.378(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.3998(19)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.372(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.379(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.380(2)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$94.40(7)$

$\mathrm{C} 5-\mathrm{C} 6$	$1.388(2)$
C5-H5A	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.462(2)$
C7-H7A	0.9300
C8-C9	$1.540(2)$
C8-H8A	0.9700
C8-H8B	0.9700
C9-C10	$1.528(3)$
C9-C8	$1.540(2)$
C9-C11	$1.542(3)$
C10-H10A	0.9600
C10-H10B	0.9601
C11-H11A	0.9600
C11-H11B	0.9600
C1-C6-C7	$123.89(13)$

sup-4

supplementary materials

$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$132.30(3)$
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{I} 1$	$132.30(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$116.98(13)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Cu} 1$	$133.79(10)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Cu} 1$	$109.06(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.10(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.4
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.40(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.98(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl1}$	$119.64(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl1}$	$119.38(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.38(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.3
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.10(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.00(14)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.11(13)$

N1-C7-C6	$125.56(13)$
N1-C7-H7A	117.2
C6-C7-H7A	117.2
N1-C8-C9	113.84 (13)
N1-C8-H8A	108.8
C9-C8-H8A	108.8
N1-C8-H8B	108.8
C9-C8-H8B	108.8
H8A-C8-H8B	107.7
C10-C9-C8	$110.85(12)$
C10-C9-C8	$110.85(12)$
C8i-C9-C8	$112.74(19)$
C10-C9-C11	$109.8(2)$
C8i-C9-C11	$106.21(13)$
C8-C9-C11	$106.21(13)$
C9-C10-H10A	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	109.5
C9-C11-H11A	109.4
C9-C11-H11B	109.5
H11A-C11-H11B	109.5

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots \mathrm{Cg} 1{ }^{\text {ii }}$	0.97	2.92	$3.7220(19)$	141
Symmetry codes: (ii) $-x+1 / 2,-y+1 / 2,-z+1$.				

supplementary materials

Fig. 1

Fig. 2

